An upcoming paper titled “Multiscale fingerprinting of neuronal functional connectivity” in the journal Brain Structure and Function (in press) is available in MIT’s open access collection: https://dspace.mit.edu/handle/1721.1/88126
SUMMARY. Current cellular-based connectomics approaches aim to delineate the functional or structural organizations of mammalian brain circuits through neuronal activity mapping and/or axonal tracing. To discern possible connectivity between functionally identified neurons in widely distributed brain circuits, reliable and efficient network-based approaches of cross-registering or cross-correlating such functional-structural data are essential. Here, a novel cross-correlation approach that exploits multiple timing-specific, response-specific and cell-specific neuronal characteristics as coincident fingerprint markers at the systems, network and cellular levels is proposed. Application of this multiscale temporal-cellular coincident fingerprinting assay to the respiratory central pattern generator network in rats revealed a descending excitatory pathway with characteristic activity pattern and projecting from a distinct neuronal population in pons to its counterparts in medulla that control the post-inspiratory phase of the respiratory rhythm important for normal breathing, airway protection and respiratory-vocalization coordination. This enabling neurotracing approach may prove valuable for functional connectivity mapping of other brain circuits.